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Abstract

Natural language serves as a powerful medium for coordi-
nation, information sharing, instruction, and building a the-
ory of mind in teams. However, training agents to interpret
such communication often relies on either rigid, templated,
or symbolic messages that are not robust, or on large lan-
guage models (LLMs), which introduce significant inference
delays. We address this with a framework to bridge the gap
between high-dimensional unrestricted natural language mes-
sages and low-dimensional representations suited for training
communication-aware reinforcement learning (RL) agents.
Our approach follows a two-stage training process: (1) train-
ing an encoder on diverse communication logs generated by
LLM-powered agents to learn a low-dimensional representa-
tion of messages, and (2) integrating this encoder to train RL
agents in multi-agent collaboration scenarios. We evaluate
our framework in Lunar Lander and Merge, two long-horizon
environments, and show improved performance with commu-
nication. Furthermore, we show that the trained RL agents are
capable of understanding messages even when worded in un-
seen ways, demonstrating the robustness of our framework.

1 Introduction

Natural language enables humans to share information,
adapt plans, and build a theory of mind in collaborative set-
tings, making it ideal for robot teammates to also understand
natural language messages. Large language models (LLMs)
make it feasible to parse varied phrasing (e.g., “bring me
water” vs. “get me a glass of water”) that a user might
say. However, in dynamic situations, e.g., “don’t turn left; a
child just stepped out”, their longer inference time can slow
the decision loop. Moreover, these models are not trained
to be optimal or collaborative, especially when interacting
with human teammates. On the other hand, reinforcement
learning (RL) agents can act faster with smaller policies, but
typically lack the capability to understand and act on un-
constrained natural language (Luketina et al. 2019). In this
work, we address the problem of training communication-
aware RL policies for human-machine teaming to maintain
low-latency decision-making while equipping agents with
an understanding of natural language messages.

Agents capable of collaborating with explicit communi-
cation have previously been studied in the context of multi-
agent reinforcement learning (Lazaridou and Baroni 2020;
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Figure 1: Summary of our proposed framework. We pre-
train an autoencoder with synthetic communication data
generated by an LLM. Then, we integrate the encoder into
RL training to obtain a communication-aware RL policy ca-
pable of understanding unseen messages as well.

Zhu, Dastani, and Wang 2024). However, such works fo-
cused on symbolic communication, in which agents commu-
nicated via symbols that were not necessarily grounded in
natural language (Evtimova et al. 2018; Havrylov and Titov
2017; Kottur et al. 2017; Lazaridou et al. 2018). Subsequent
works also extended symbolic communication to partially
observable domains and showed that communication was
key to bridging the information gap between agents (Jaques
et al. 2018; Eccles et al. 2019).

One way to integrate symbolic and natural language com-
munication is to manually design symbols and train RL poli-
cies that can interpret and communicate using them. How-
ever, this process is tedious and does not scale well (Tellex
et al. 2020; Tabrez, Leonard, and Hayes 2025). Another ap-
proach to training such agents would be to collect teaming
and communication behaviors through large-scale human-
human or human-robot data collection, but this is expen-
sive and challenging (Rogers and Marshall 2017). However,
recent work has shown that LLM-powered agents exhibit
human-like behavior (Zhou et al. 2024; Li et al. 2023; Xie
et al. 2024; Yang et al. 2024; Srikanth et al. 2025), making
them a good proxy for humans.



Our key insight is that by learning to encode synthetic
communication data, we can train RL policies capable of
understanding messages in natural language. We achieve
this via a two-step process. First, we pre-train an autoen-
coder on the communication data to obtain an encoder that
converts high-dimensional natural language messages to a
low-dimensional embedding. Then, we integrate this en-
coder into RL training to obtain a message-conditioned pol-
icy. Our results show that the learned RL policy generalizes
robustly to novel, unseen messages, as it was exposed to di-
verse communication data during training.

2 Method

Stage 1: Learning Low-Dimensional Representations of
Natural Language Messages Directly learning an RL
policy conditioned on a high-dimensional message input is
challenging, as it requires the policy to simultaneously learn
a good representation of the message and a good mapping
to actions. Hence, we employ a Variational Autoencoder
(VAE) (Kingma and Welling 2014) to convert the high-
dimensional message inputs to low-dimensional representa-
tions that are more suitable as observations to the RL agent.
First, we query an LLM to generate a set of diverse phrasings
of messages an agent could send in the domain, based on
the available actions. Then, we obtain the sentence embed-
dings, i.e., a high-dimensional representation, of these mes-
sages by passing them through Sentence-BERT (Reimers
and Gurevych 2019). Finally, we train the VAE with a low-
dimensional latent space to encode and reconstruct the sen-
tence embeddings. The diverse messages in its training set
enable the VAE to encode incoming natural language mes-
sages into their corresponding low-dimensional representa-
tion during RL agent execution.

Stage 2: Training Communication-Aware Policies We
assume a training setup with a communication-aware RL
agent paired with a fixed heuristic agent sending natural lan-
guage messages selected from a message set. During train-
ing, the pre-trained encoder converts the received message
to its low-dimensional representation, which the RL agent
receives as an additional input along with observations from
the environment. We then train the RL policy, now condi-
tioned on both messages and observation, to maximize the
discounted return. While our framework makes no assump-
tions about the RL algorithm, we use Proximal Policy Opti-
mization (PPO) (Schulman et al. 2017) in our experiments.

3 Results

Table 1: Performance comparison across domains with and
without communication. Communication, even with unseen
wording, results in significant performance improvements.
Effect size reported as Cohen’s d.

Domain w/ Comm w/o Comm Effect Size

Lander —3.36041 _7-400.46 0.466
MSI‘gG 18.170,58 13.98()'75 0.312

Domains. We evaluated the communication-aware poli-
cies in two domains modified to include communication:
Lunar Lander (Brockman et al. 2016) and Merge (Leurent
2018). In the Lunar Lander domain, the objective is to land
the lander while avoiding certain areas of space marked as
“danger zones”, which are not observable to the RL agent
and would reduce the RL agent’s reward when entering. The
heuristic agent provides language instructions on where the
danger zones are located to the RL agent. In the Merge do-
main (Leurent 2018), the RL agent’s task is to avoid colli-
sions with merging traffic whose merge intent is unobserved
by the RL agent. The heuristic agent indicates to the agent
from which side the merging vehicle is approaching.

Results. Table 1 compares the performance of RL agents
with and without communication. Adding communication
understanding capabilities significantly improves the agent’s
performance (p < 0.01), highlighting the benefits of our
framework. By training an autoencoder on diverse commu-
nication logs, our framework enables RL agents to infer the
latent intent of their partners from unrestricted natural lan-
guage input.

3.1 Proposed Future Evaluation.

We propose the following future extensions for evaluation of
our framework:

Unseen scenarios. We will evaluate our framework on un-
seen scenarios in both of our domains. For Lunar Lander,
this constitutes evaluating on danger zone configurations un-
seen during training. For the Merge domain, we will modify
where the unseen vehicles merge onto the highway.

Multi-agent domain. We propose evaluating our frame-
work on a multi-agent collaborative domain, Overcooked
Al (ove 2018; Carroll et al. 2019). We will modify this do-
main to have both agents communicate with each other in
natural language and train them with our framework.

4 Discussion

Future work Here, we outline our proposed improve-
ments and extensions. Prior work has explored training
losses to facilitate communication in RL agents (Eccles et al.
2019), and we plan to incorporate similar strategies into our
framework. Additionally, we assume that the heuristic agent
sends perfect messages. In human-agent teaming scenarios,
messages may be noisy or even adversarial (e.g., deceptive
or misleading), necessitating mechanisms to detect and filter
such inputs. We plan to integrate learnable message filtering
in our framework in the future. By leveraging ideas from
prior work (e.g., (Strouse et al. 2021)) to generate a popula-
tion of partners that vary in terms of their messaging behav-
ior, the RL agent can learn a robust filtering mechanism.

Conclusion We present a framework for training RL
agents that understand natural language messages. These
agents can adapt to unseen messages during evaluation
in two long-horizon environments. Such communication-
aware RL agents enable effective ToM as they can leverage
private knowledge and intent shared by their partners in nat-
ural language.
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A  Domains

We address the problem of training communication-aware
RL policies in collaborative sequential decision-making en-
vironments. We formulate the environment as a decentral-
ized Partially Observable Markov Decision Process (dec-
POMDP (Bernstein et al. 2002)) (S, A, R, P, O, ~) with N
agents, where S is the state space, A = IV A; is the joint
action space of all agents, R : S x. A — R is the common re-
ward function that all agents receive, P : Sx Ax S — [0, 1]
is the transition function, O is the observation function, and
~ is the discount factor. The agents’ goal is to maximize the
discounted sum of rewards, J = X;v'r;, where r; is the
reward obtained at timestep t.

A.1 Lunar Lander

Each policy is trained for 5,000,000 timesteps, with a max-
imum episode duration of 600 timesteps. The dimension of
the message vector is 2.

A.2 Merge

Each policy was trained for 200,000 timesteps, with a max-
imum episode duration of 256 timesteps. The dimension of
the message vector is 32.

B Algorithm
B.1 Pseudocode

We train the RL agent with PPO (Schulman et al. 2017),
using the implementation and default hyperparameters from
CleanRL (Huang et al. 2022).

Algorithm 1: PPO with Communication
Input: POMDP (S, A, R, P, O, v); initial policy
parameters 6; episode horizon T; total
iterations [NV
Output: Trained policy 7y

10« 90

2foric{l...N}do

3 Get initial state sg

4 0 < 0(50)

5 fort € {0...T}do // Rollout
6 my  heuristic_agent_message(o;)

7 my < encoder(my)

8 Or  [0r; ™y ] // Concat message
9 ag ~ 7Tg(CLt|6t)

10 re ~ R(St, at)

11 St+1 ™~ P(8t7 at)

12 Ot41 < O(St+1)

13 end

14 Update 6 with PPO

15 end




