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ABSTRACT
The car-to-driver handover is a critically important component of
safe autonomous vehicle operation when the vehicle is unable to
safely proceed on its own. Current implementations of this han-
dover in automobiles take the form of a generic alarm indicating an
imminent transfer of control back to the human driver. However,
certain levels of vehicle autonomymay allow the driver to engage in
other, non-driving related tasks prior to a handover, leading to sub-
stantial difficulty in quickly regaining situational awareness. This
delay in re-orientation could potentially lead to life-threatening
failures unless mitigating steps are taken. Explainable AI has been
shown to improve fluency and teamwork in human-robot collab-
oration scenarios. Therefore, we hypothesize that by utilizing au-
tonomous explanation, these car-to-driver handovers can be per-
formed more safely and reliably. The rationale is, by providing the
driver with additional situational knowledge, they will more rapidly
focus on the relevant parts of the driving environment. Towards
this end, we propose an algorithmic failure-mode identification and
explanation approach to enable informed handovers from vehicle
to driver. Furthermore, we propose a set of human-subjects driving-
simulator studies to determine the appropriate form of explanation
during handovers, as well as validate our framework.
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1 MOTIVATION & BACKGROUND
The Society of Automotive Engineers (SAE) defines a framework
through which autonomous driving features can be placed into
one of six categories, ranging from Level 0 (full human control) to
Level 5 (full autonomous control) [1]. Many autonomous vehicles
(AVs) on the road today contain features approaching Level 3 in this
taxonomy, commonly referred to as eyes off driving. In SAE Level
3, the vehicle assumes responsibility for all aspects of a certain
driving modality (say, highway driving), allowing the human driver
to focus on other tasks, but with the expectation that the driver
must respond to a request to intervene at any time.
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Figure 1: Proposed human-subjects study to evaluate different modalities
for informing a driver of a potential failure state prior to handover in an
autonomous vehicle simulator. Driving image from van der Heiden et al. [15]

Such car-to-driver control handovers occur whenever the au-
tonomous driving system reaches its bounds of operational safety.
However, this transfer of driving responsibility is by no means
trivial; as drivers are permitted to be more distracted from the driv-
ing task, it takes them longer to regain the situational awareness
needed to safely assume control [4, 5], and avoid the potentially
dangerous state that caused the self-driving system to lose confi-
dence, especially when that state arises from extrinsic factors (e.g.,
weather conditions, road elements, or traffic situations).

Prior work on the handover problem has investigated the bene-
fits of auditory pre-alerts: series of beeps that precede the transfer to
manual control by several seconds. Results from this study showed
that pre-alerts cause the driver to disengage earlier from their as-
signed non-driving related task and focus more on the road prior to
handover in comparison with the industry-standard brief alert fol-
lowed by immediate transfer condition [15]. Although pre-alerting
minimizes surprise, the driver must still discover the reason for
handover on their own. Additionally, the approach does not provide
any algorithmic apparatus for predicting the handover in advance,
thus triggering the pre-alerts. Another study examining the han-
dover problem by Du et al. revealed the effects of emotions on
driver takeover, showing that positive emotional valence leads to
improved post-takeover performance [3].

Preliminary research has been conducted into the use of explana-
tions to engender trust in AVs as the vehicle is forced to perform un-
expected actions or cede control [9, 16]. Explainable AI has emerged
as a necessary component of fieldably safe autonomous systems in
safety-critical domains, especially for the establishment of shared
mental models and appropriate trust [2, 6, 8, 12, 13]. Therefore, we
hypothesize in this work that utilizing explainable AI will lead to
better informed and more fluent car-to-driver handover. To test



this hypothesis, we propose, in the following sections, both an al-
gorithmic approach aimed at informed handover and a series of
user studies to determine its effectiveness.

2 APPROACH
Here, we detail a generalized theoretical framework of failure
mode clustering and labeling for informed autonomous system-
to-operator handover arising from uncertainty in that system’s
model and decision making.

The central insight behind making this handover informed is
automated identification and explanation of anticipated risks using
natural language to minimize surprise while maximizing handover
fluency. The framework can be characterized by two components
responsible for: i) automated clustering of anticipated risks, and ii)
human intelligible and rapidly understandable labeling of predicted
failures as explanations during handover.

Automated Failure-Mode Clustering: Our method of failure-
mode clustering consists of a three-step procedure: 1) running
Monte Carlo (MC) simulation rollouts within the configuration
space to obtain expected rewards, 2) clustering rewards using
Expectation-Maximization (EM), and 3) calculating the expected
probabilities of failure-modes using occupational frequency (a form
of histogram) across the MC rollouts.

First, given a model of the autonomous system and its environ-
ment, we randomly sample k control inputs from this distribution
and simulate k forward rollouts of the system (k in this case is a
hyper-parameter informed by the complexity of the domain, accu-
racy of the desired output, and time required for the operator to
gain situational awareness). For each pass, the solution is obtained
in the form of a tuple containing the state and expected reward.

Then, we run the expectation-maximization algorithm to cluster
the expected rewards from each MC rollout and obtain a set of
states with similar expected rewards, modeled as Gaussian mixture
models (GMMs).

Finally, with GMMs representing each potential reward cluster,
we can use the final results from MC sampling to obtain the occu-
pational frequency over the clusters. This probability distribution
will be used to calculate the likelihood of each cluster, and via a
thresholding mechanism, sufficiently likely clusters will have their
mean reward computed, with low values indicating a potential
failure-mode, triggering the labeling process.

Human Intelligible Labeling of Failure-Mode: At the end of
the clustering phase, we have a set of clusters with associated
likelihoods and mean rewards. Using these values, we trigger the
labeling process via a pair of thresholding criteria. We approach
the problem of labeling clusters as a set cover problem, trying to
find the smallest logical expression of predicates that succinctly
describe a cluster of states similar to Hayes and Shah [7]. Prior
work used the Quine-McCluskey algorithm (QM) to resolve an
arbitrary set of states into a natural language description by using
a Boolean algebra over the space of defined predicates. Though
this approach is innovative in performing explanation generation,
the solution is exponential in memory and runtime complexity
relative to the size of the domain and predicate set, preventing
its use in most real-world problems. Unlike the prior work, we

propose solving the problem of minimum set cover using an Integer
Programming formulation [14], which shows multiple order of
magnitude improvements over the state-of-the-art [7].

3 EXPERIMENTAL VALIDATION
To test our central hypothesis, we propose a human-subjects study
(Study 1) using a driving simulator to compare handover alert modal-
ities, and to validate our approach, we propose another driving
simulator study (Study 2) to compare the performance of our algo-
rithmic framework against the current state of the art.

Study 1 involves a simulated autonomous driving scenario, in
which the human driver is provided with a distractor task to take
their attention off of the road. Prior to a preformulated car-to-driver
handover event, the vehicle will audibly alert the driver either with
a) a generic alarm or phrase (e.g. “Handing over control!”), or b) a
phrase with a semantic description of the failure state. Condition b
is further broken down bymodality of expression; b.1) identifies the
object causing the failure state, b.2) identifies the direction relative
to the driver in which that object lies, b.3) combines the information
conveyed in b.1 and b.2, and b.4) presents the information of b.3 in
the form of a complete sentence. For a representative example of
the described conditions, see Figure 1.

Based on both the subjective measure of perceived helpfulness,
and the objective measure of crash avoidance rate in the simula-
tion, we hypothesize as follows: H1.) condition b will generally
outperform a, H2.) condition b.3 will outperform conditions b.1
and b.2, because of the increase in conveyed information, and H3.)
condition b.3 will also outperform condition b.4, as the relative
increase in information is not sufficient to overcome the increase
in time overhead. Previous studies in cognitive science and psy-
chology have shown that humans are adept at extracting semantic
information and retaining it short-term even with non-complete
sentence structure, giving preliminary insight for H3 [10, 11].

Study 2would involve taking the best performingmodality from
Study 1, and using it to inform the implementation of our algorith-
mic formulation (Section 2). We would take the same simulated
autonomous driving handover scenario as described in Study 1, and
compare the effectiveness of a handover alarm triggered by our
algorithm against the current state of the art (no information con-
veyed beyond the alarm itself). We hypothesize that the addition
of information associated with our algorithmic approach will lead
to objectively improved performance in avoiding failure states, as
well as improved user perception of system safety and helpfulness.

4 CONCLUSION
In this paper, we have argued that explainable AI can be leveraged to
improve car-to-driver handover in autonomous vehicles. In support
of this, we have presented an algorithmic formulation enabling
failure-mode identification and explanation for autonomous system-
to-operator handover, capable of providing value in human-robot
teaming domains, enabling mental model convergence for effective
task fluency. We also proposed a set of human-subjects studies to
inform the algorithmic implementation and later compare it to the
state of the art.
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