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Abstract—Understanding how humans collaborate and com-
municate is crucial for advancing human-robot teaming and
decision support systems. However, collecting exhaustive human
data and evaluating human-robot teaming algorithms through
user studies is often impractical, underscoring the need for
synthetic models of diverse human behavior. In our prior work,
we introduced PLAN-QD, a novel framework that combines
Quality Diversity (QD) optimization with LLM-powered agents
to algorithmically generate diverse teaming and communication
behaviors in collaborative tasks. We validated PLAN-QD through
a user study (n = 54 participants) and showed that it effectively
replicates trends from human teaming data while also capturing
behaviors that are difficult to observe without large-scale data
collection. In this work, we summarize the PLAN-QD framework
and key findings, and propose its extensions to human-robot
teaming: (1) generating synthetic human data for robot learning,
(2) incorporating diverse personalities to support personalization,
and (3) studying human-like communication and negotiation. Our
source code is available at github.com/icaros-usc/plan-qd.

I. INTRODUCTION AND MOTIVATION

Robots and autonomous systems deployed in the real world
must collaborate with and adapt to humans who exhibit
diverse behaviors, expectations, and communication styles. For
example, consider a robot that assists chefs in a restaurant
kitchen. Different chefs may want different robot behavior
(e.g., only chop vegetables) or may require it to listen to
different commands. For robots to adapt to such varied teams,
they would need to build an understanding of how different
humans might operate when performing these tasks.

One approach to generating such teaming behaviors is
through learning models of large-scale human data [7, 33].
However, collecting a sufficiently large and diverse dataset
from collaborative domains, especially ones involving multiple
interacting humans, is expensive and challenging [36]. On the
other hand, prior work has shown large language model (LLM)-
powered agents to be a viable option for modeling human
behavior [50, 21, 47, 48]. When prompted with personalities
or strategies to bias their actions, LLMs are shown to exhibit
human-like behavior in social domains [32].

In our prior work, we proposed PLAN-QD (Prompting LLM-
powered Agents for Novel Behavior via Quality Diversity) [40],
a framework that uses Quality Diversity (QD) optimization to
algorithmically generate prompts that elicit diverse human-like
teaming and communication behaviors in LLM-powered agents.
Unlike manual prompt engineering, PLAN-QD iteratively
discovers high-performing and behaviorally diverse agents
by searching over user-defined diversity axes (e.g., workload

distribution), referred to as measure functions [35]. Prompts
found during the search act as stepping stones to find new
prompts for agents with better performance or novel behavior.

In this paper, we summarize the PLAN-QD framework
(Sec. II), its key empirical findings (Sec. III), and explore
its potential applications in human-robot teaming (Sec. IV).
First, we describe how the human-like agents generated by
PLAN-QD can guide robot learning, improving its adaptability
to different users when deployed. Second, we propose ways
to include personality models into PLAN-QD’s population
generation, allowing robots to learn personalized strategies
for different human personalities. Finally, we present some
alternative communication methods, such as negotiation, and
discuss their integration into PLAN-QD.

II. SUMMARY OF THE PLAN-QD FRAMEWORK

The key insight of PLAN-QD is that QD optimization can
be used to algorithmically generate prompts that elicit human-
like teaming diversity in LLM-powered agents, leveraging
the idea that prompts discovered during the search serve as
stepping stones. Prior works use this principle to diversify agent
behaviors [34, 31, 45, 3] and text generation or red teaming
LLMs [5, 39, 26]. For PLAN-QD, we combined these ideas
to diversify LLM-powered collaborative agents.

The framework consists of the following components: (1)
LLM-powered agents to interface between an LLM and the
environment, along with a communication setup for agents to
pass messages, and (2) QD optimization to find prompts that
elicit diverse behavior in LLM-powered agents. Fig. 2 shows
the overview of the complete framework.

A. LLM-powered agents

We formulate the environment as a decentralized Markov
Decision Process (dec-MDP [4]) ⟨S,A,R,P, γ⟩ with N
agents, where S is the state space, A = ΠN

i Ai is the joint
action space of all agents, R : S × A → R is the common
reward function that all agents receive, P : S ×A×S → [0, 1]
is the transition function, and γ is the discount factor. The
agents’ goal is to maximize the discounted sum of rewards,
J = Σtγ

trt, where rt is the reward obtained at timestep t. For
PLAN-QD’s LLM-powered agents, the state and the actions
are provided and received via a text interface (purple arrows
in Fig. 2), with the space of textual inputs/outputs to the LLM.

At the beginning of an episode, PLAN-QD queries the LLMs
for all agents in a random sequence. The input to the LLM
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Fig. 1: PLAN-QD uses Quality Diversity (QD) optimization to generate a set of prompts to elicit human-like teaming diversity
in LLM-powered agents. The resulting teams exhibit distinct collaboration strategies (e.g., meat specialist with onion specialist),
enabling the systematic study of communication and coordination in complex environments.

provides textual context about the environment and its current
state so that the LLM can make an informed choice about
the next action to take. The LLM outputs a high-level action,
which is converted into a sequence of low-level actions (e.g.,
“move left, up, and interact”) by a motion planner, and an
optional message. Once the corresponding agent completes a
high-level action or fails after a timeout, PLAN-QD re-queries
the agent’s LLM for a new high-level action and a message.

B. QD optimization to generate prompts for diverse agents

To automate the process of finding personality prompts for
diverse agents, PLAN-QD algorithmically searches for them
using QD optimization (green arrows in Fig. 2). To begin,
PLAN-QD maintains a prompt archive consisting of discretized
cells, where each cell stores a list of high-quality personality
prompts, one for each agent in the domain, found during the
optimization. At the beginning of the optimization, an initial
prompt is selected for all agents. The algorithm searches for
new prompts that promote diversity along measure axis by
querying a separate LLM (referred to as the mutator LLM to
differentiate from LLM-powered agents) for new prompts.

The mutator LLM is provided with the prompt list and
queried to mutate the prompt list in a random direction in the
measure space (e.g., “more number of plates cleaned”). This
process generates a new prompt list that is expected to induce
behaviors aligned with that direction.

PLAN-QD evaluates this prompt list by simulating the cor-
responding LLM-powered agents in the environment, repeating
each evaluation multiple times and taking the median of the
resulting objective and measure values. The prompt list then
replaces a cell in the archive if the cell is empty or if it achieves
a higher objective value than the one currently stored.

Through this iterative process of prompt selection, mutation,
evaluation, and archive update, PLAN-QD populates the
archive with prompts that elicit high-quality and diverse
behavior in LLM-powered agents.

III. KEY TAKEAWAYS FROM PLAN-QD

We evaluated PLAN-QD on a collaborative domain, Steak-
house [16]. Inspired by the game Overcooked [1] and its
simulation environment [7], Steakhouse introduces complex
coordination challenges via larger and more varied layouts

and multi-step recipes. Our experiments led to three key
takeaways: (1) Humans exhibit diverse behaviors depending
on communication and layout, (2) PLAN-QD’s agents match
communication trends from human data, and (3) PLAN-QD’s
agents are diverse.

A. Humans exhibit diverse behaviors depending on communi-
cation and layout

Experimental Setup. We conducted a 2× 1 between-subjects
user study with and without verbal communication, using
four kitchen layouts to evaluate how spatial constraints and
communication affect human coordination. We ran a study
with 54 participants forming 27 teams of two, as part of IRB-
approved study. We defined individual and team behavior via
subjective teaming measures (e.g., trust, fluency, and workload
[24, 14, 15, 38], from a 7-point Likert-scale questionnaire) and
teamwork measures (fitness (objective), average action delay,
percent contribution to the task, and specialization).
Results. We hypothesized that communication would affect
subjective and teamwork measures in human teams. We discov-
ered that while communication generally improved performance
in asymmetric layouts, the impact was weaker in symmetric
layouts where tasks could be executed more independently.
We also observed that background knowledge and personality
influenced teaming behavior with communication. Participants
in the “without communication” condition validated these
findings, reporting coordination difficulties and expressing
a preference for some form of communication in their exit
interviews.

B. PLAN-QD’s agents match communication trends from
human data

Experiment Setup. We generated a population of LLM agents
with the PLAN-QD framework on each of the four Steakhouse
layouts, and compared the aforementioned teamwork measures
obtained by the LLM teams and the human teams from our data.
The diversity axes in PLAN-QD were based on differences
in sub-task completions (i.e., workload), a known indicator of
team coordination behavior [13, 15, 11]
Results. We observed that behavioral trends exhibited by
PLAN-QD’s agents partially matched those observed in the
user study between “with communication” and “without
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Fig. 2: Overview of the PLAN-QD framework, including the QD optimization (green arrows) and the LLM-powered agents.
QD optimization repeatedly selects and mutates prompts to generate new prompts that are then evaluated in the environment
(purple arrows). Only high-quality and diverse prompts are retained in the prompt archive.

communication” conditions. We observed, via a one-sample test
of proportions, that 12 out of 16 layout–measure combinations
matched human trends (p = .038).

C. PLAN-QD’s agents are diverse

Experiment Setup. We tested PLAN-QD against a Random
Mutation baseline, in which an LLM generated 100 prompts
for diverse agents (the same number generated by PLAN-QD),
but without an iterative process.
Results. We discovered that PLAN-QD achieves significantly
higher coverage (number of cells covered in the prompt
archive) than Random Mutation, based on a one-sample test of
proportions (p < .001). Qualitatively, by plotting the heatmaps
of the prompt archive (Fig. 3), we saw that PLAN-QD covers
extreme behaviors (Fig. 3a), including those not found in our
small-scale human data, highlighting its benefit in augmenting
human datasets. Even when looking at measures that were not
explicitly diversified by PLAN-QD (Fig. 3b), we still see a
better coverage than Random Mutation, including certain rare
behaviors such as low percent contribution and specialization,
similar to those exhibited by human users who did not fully
understand the rules of the game.

IV. OPEN CHALLENGES AND FUTURE APPROACHES

Our findings demonstrate that humans exhibit diversity in
teamwork strategies, influenced by spatial layout, communica-
tion, and individual differences such as personality and prior
experience. PLAN-QD agents can replicate several of these
behavioral trends and generate strategies that are difficult to
observe without large data collection human user studies. In
this section, we propose extensions to PLAN-QD toward more
embodied, adaptive, and personalized applications in human-
robot teaming: (1) Robot Learning and Teaming: enabling
robots to train with a diverse set of synthetic human-like
partners, (2) Personality and Personalization: incorporating

psychologically grounded traits into agent behavior for sim-
ulating and adapting to varied teammate profiles, and (3)
Communication and Negotiation: improving the communication
framework to support richer, more human-like coordination
and dialogue strategies. These directions aim to bridge the
gap between synthetic agent simulation and training teaming
capabilities in embodied autonomous systems.

A1: Robot Learning and Teaming. A major opportunity
for future work is leveraging PLAN-QD to generate diverse,
human-like populations in embodied robot simulators such as
CALVIN [25] and RLBench [18], where a simulated human and
robot (or human–human) share a physical workspace. Extending
PLAN-QD to these domains would allow us to algorithmically
explore variations in human behavior (e.g., role specialization)
and communication style (e.g., ambiguity) within embodied
shared tasks such as tabletop manipulation or tool-use scenarios.
This offers a scalable alternative to collecting large-scale hu-
man–robot interaction data, which remains a crucial bottleneck
for training and evaluating collaborative robotic agents [27].

PLAN-QD can generate a library of teaming trajectories
that reflect a range of human strategies. The robot could then
either learn to imitate these strategies [7] or learn the best
collaborative strategies for each human strategy [41, 6, 29, 49].
This approach encourages the robot to generalize across a
spectrum of teaming behaviors, rather than overfitting to a
narrow set of collaborators. Additionally, the QD archive can
support curriculum-based training, starting with cooperative
or predictable teammates and progressively introducing more
unpredictable or adversarial styles to build robustness. Such a
progression could help the robot develop flexible collaboration
strategies under controlled and scalable conditions. Finally, the
PLAN-QD-based population could also serve as a test suite
to thoroughly evaluate robotic systems, supporting safer and
more reliable deployment in human-centric applications.



(a) Workload Measures on Open Layout with communication. (b) Teamwork Measures on Forced Coordination Layout without
communication.

Fig. 3: Example heatmaps of the archives resulting from human data and the agents generated by PLAN-QD and Random
Mutation, colored by the corresponding fitness value. PLAN-QD generates agents covering a wider range of behavior compared
to the Random Mutation baseline, including certain extremes observed in the human data.

A2: Personality and Personalization. Our user study showed
that individual personality traits influenced team behavior and
outcomes. For example, we observed that in the “without
communication” condition, team performance was highly cor-
related with interpersonal trust, suggesting that some individuals
were more effective at implicit coordination than others. These
preliminary patterns suggest that individual personality traits
can meaningfully shape collaborative behavior.

Recent work has shown that LLMs can be trained to
reflect personality traits in human communication datasets [22].
PLAN-QD can extend this from text-based settings to em-
bodied collaboration, generating synthetic agents with varied
personality measures based on psychological models such as
the Big Five [19]. For example, an extroverted agent might
communicate more frequently or take initiative in ambiguous
situations, while a neurotic agent may be more reactive or avoid
uncertain actions. These traits could be incorporated as axes in
the QD mutation space, guiding behavioral and communication
variations during population generation. However, ensuring
the actions of these embodied agents are aligned with their
intended personalities remains an open challenge.

Another avenue for future work is exploring how personality-
aware agents affect teaming outcomes when paired with real
humans. As found in prior work [2, 28] and in our results,
certain personality pairings may lead to better coordination,
trust, or subjective benefits. For example, an extroverted robot
could successfully pair users who prefer explicit communication
instead of relying on implicit coordination. PLAN-QD could
serve as a testbed for systematically studying these effects and
training robots to adapt their behavior dynamically based on
inferred human traits. Although personalization at this level
remains an open area in HRI, PLAN-QD offers a scalable and
controlled way to explore it.
A3: Communication and Negotiation. Prior work shows
that communication timing, content, and modality significantly
impact team performance, particularly in safety-critical or
uncertain environments [20, 46, 23]. Yet, accounting for
variation in communication strategies in human-robot teams
remains challenging [44, 27]. While foundation models have
enabled significant progress in language understanding and
generation, deploying them on embodied agents is computa-
tionally expensive and not optimized for real-time, long-term

human collaboration [17, 10].
PLAN-QD could enable the generation of human-like

messages aligned with different coordination strategies or
personality traits. One promising direction is to leverage this
synthetic dialogue to train communication-aware robot policies
that allow the robot to condition its policy on incoming
teammate utterances [25]. Future work could also explore
mechanisms that help the robot decide when to attend to
language versus when to rely on other cues, particularly in
scenarios involving unreliable or adversarial partners (e.g.,
agents that lie to or attempt to confuse their partners).

Beyond basic coordination, negotiation is a critical commu-
nication skill in collaborative interaction, where autonomous
agents must often align on subgoals and resolve conflicts,
particularly in dynamic, uncertain scenarios [43, 12, 37].
In human-robot teaming, enabling negotiation behaviors can
facilitate shared mental models, flexible role assignment, and
improved trust and robustness [8, 9]. The LLM-powered agents
in PLAN-QD can be guided by frameworks from human
factors (e.g., Joint Intention Theory) [42] and game-theoretic
models of negotiation and cooperation [30], leading to diverse
negotiation behaviors.

V. CONCLUSION

In our prior work, we introduced PLAN-QD, a framework
that applies QD optimization to generate diverse, human-like
teaming and communication behavior. Our results showed
that PLAN-QD discovers diverse team behaviors, including
certain extremes observed in human data, that replicate human-
like effects of communication. As a step toward extending
the framework for human-robot teaming, we outline three
core directions for future work: (1) enabling robot learning
from PLAN-QD’s diverse population of synthetic partners,
(2) incorporating personality models into PLAN-QD’s team
generation to support personalization, and (3) modeling com-
munication timing and negotiation strategies that are more
aligned with human teams. We are excited about the prospect
of these extensions providing a foundation for training and
evaluating adaptive, communication-aware, and trustworthy
robot teammates.
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