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ABSTRACT
In collaborative tasks involving human and robotic teammates,
live communication between agents has potential to substantially
improve task efficiency and fluency. Effective communication pro-
vides essential situational awareness to adapt successfully during
uncertain situations and encourage informed decision-making. In
contrast, poor communication can lead to incongruous mental mod-
els resulting in mistrust and failures. In this work, we first introduce
characterizations of and generative algorithms for two complemen-
tary modalities of visual guidance: prescriptive guidance (visualiz-
ing recommended actions), and descriptive guidance (visualizing
state space information to aid in decision-making). Robots can
communicate this guidance to human teammates via augmented
reality (AR) interfaces, facilitating synchronization of notions of
environmental uncertainty and offering more collaborative and
interpretable recommendations. We also introduce a min-entropy
multi-agent collaborative planning algorithm for uncertain envi-
ronments, informing the generation of these proactive visual rec-
ommendations for more informed human decision-making. We
illustrate the effectiveness of our algorithm and compare these dif-
ferent modalities of AR-based guidance in a human subjects study
involving a collaborative, partially observable search task. Finally,
we synthesize our findings into actionable insights informing the
use of prescriptive and descriptive visual guidance.
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1 INTRODUCTION
When a team is tasked with solving a problem in an uncertain envi-
ronment, it is vitally important to keep notions of that uncertainty,
as well as the problem-solving strategy, synchronized between
teammates as this information changes over time, in order for each
teammate to act in a coordinated fashion. In this work, we explore
this challenge as it relates to human-robot teaming. Autonomous
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Figure 1: AR-based interfaces for prescriptive (Left) and de-
scriptive guidance (Right) in the Minesweeper domain. In
the prescriptive condition, suggested moves are shown as
cyan arrows between grid squares, with suggested defuse ac-
tions indicated by the orange pin (underneath the virtual
drone teammate). In the descriptive condition, grid squares
are colored as a heatmap, representing the probability for
each square containing a hidden mine as judged by the
drone, from dark purple (low) to bright yellow (high).

agents are well-equipped to plan over probabilistic state spaces,
updating their probability models in response to new observations,
and choosing optimal actions in response to this new information.
We hypothesize that visually communicating this knowledge to
human teammates efficiently improves team performance.

Consider a search and rescue task with human and robot team-
mates coordinating to locate a victim: this is an inherently stochastic
environment, where the likelihood of finding a victim varies loca-
tion to location, characterized by a probability mass function (PMF).
As the human and robot teammates cover more ground with their
search, that PMF continually updates in response to the agents’
observations. Since the robot agents are maintaining an up-to-date
PMF to plan over, they can also communicate it to their human
counterpart to keep them in the loop, a modality we call descriptive
guidance (synchronizing state space information to aid in human
decision making). Additionally, the robots can use that PMF com-
bined with a model of their human counterpart’s action space to
directly recommend next actions to the human, a modality we call
prescriptive guidance.

In this work we use a 3D collaborative analogue of the PC game
Minesweeper, played using an augmented reality (AR) headset, to
serve as an experimental domain reminiscent of real-world spatial
navigation and search tasks. For this game, we tasked a human-
drone team with locating and defusing a number of mines hidden
throughout a grid of cardboard boxes projected onto the floor of an
experiment space (Fig. 1). The drone can navigate the environment,
taking measurements with a noisy sensor to attempt to determine



whether a box contains a hidden mine. The human must also phys-
ically navigate the environment, taking time to search boxes and
defuse mines whenever they think they’ve located one.

To assist the human in their task, we developed an algorithmic
framework for multi-agent collaboration under uncertainty, capable
of generating prescriptive and descriptive visual guidance for the
human teammate as the drone explores the environment. We also
developed AR interfaces for each type of drone-provided guidance,
with arrows and pins indicating suggested moves under the pre-
scriptive modality, and a heatmap overlaid onto the environment
representing the PMF under the descriptive modality (Fig. 1).

We conducted a human subjects study using this collaborative
Minesweeper task, varying whichmodality of guidance participants
saw between conditions as they attempted to locate and defuse all
hidden mines as quickly as possible: prescriptive guidance (the
‘arrow’ condition), descriptive guidance (the ‘heatmap’ condition),
and a combination of both (the ‘combined’ condition). This study
served to validate our algorithm in a live human-robot teaming set-
ting with environmental uncertainty, helping to assess the benefits
and drawbacks of each type of visual guidance through a variety
of objective and subjective measures.

We characterize the core contributions of this work as follows:

• A characterization of and method for generating AR-based
prescriptive and descriptive visual guidance, communicating
environmental uncertainty and providing actionable recom-
mendations to human teammates in joint human-robot tasks.
• An empirical validation and analysis of the effectiveness
of prescriptive and descriptive visual guidance through a
human subjects study involving a collaborative search task
with an autonomous robot.

2 BACKGROUND AND RELATEDWORK
Visual Guidance & Augmented Reality Interfaces. Visualiza-
tion is frequently used in human-robot teaming for tasks such
as environmental navigation, search and inspection, and fault re-
covery [6, 20, 22]. The visualization of task and environment data
enables human teammates to develop new insights into the problem
being solved and heightens their situational awareness, aiding in
decision-making [36]. Gale et al. demonstrated the effectiveness of
playbook-based visual interfaces to allocate roles and responsibili-
ties between human-automation systems in an unmanned aircraft
system (UAS) swarm support task [15]. Ahmed et al. successfully
utilized a visual sketching interface to fuse the data of multiple noisy
‘human sensors’ in cooperative search missions with autonomous
vehicles, further demonstrating the utility of visual information
transfer in human-robot teaming [1].

Visualization is particularly useful for communicating uncer-
tainty. Bhatt et al. explored methods for assessing and displaying
uncertainty in models, communicating it to stakeholders to assist in
trust-building and decision making. [2]. Furthermore, Colley et al.
showed that visualizing the internal information of autonomous ve-
hicles improves trust and situational awareness [7]. As these works
focus on the communication of internal model-based uncertainty
in human-robot teaming, we apply the same concept to external
environment-based uncertainty associated with unexplored terrain.

Recent work on augmented reality-based interfaces has shown
that providing in-situ visualizations with an AR headset can greatly
improve the efficiency of human-robot teaming [30, 31]. Fraune et
al. investigated the use of mixed reality interfaces for humans mon-
itoring and commanding drone teams for search and rescue [13].
Kunze et al. show the effectiveness of AR to visually communicate
uncertainty during automated driving [23].

Explainable AI & Shared Mental Models. Recent research in
model reconciliation and knowledge sharing in human-robot teams
has shown the importance of explainability and mental model syn-
chronization to improve trust, transparency, and team performance
[5, 38]. Furthermore, explainable AI (xAI) can help complex mod-
els become more understandable by human teammates, allowing
for faster debugging when unexpected behaviors or failures occur
[18, 32]. Visualization is a common modality for presenting expla-
nations through xAI [33]. Visual information presentation is ideally
suited to explanations that are complex, long, re-referenced, and
which involve uncertainty or noise [10]. Therefore, visualization is
often used to aid in the interpretation of complex models, showing
how model parameters affect final classification decisions (e.g., in
local approximation methods such as SHAP [26], model-agnostic
methods such as LIME [32], and saliency map methods such as
Grad-CAM [34]).

Other recent studies have utilized case-based explanations as
visualizations to expose overconfidence in models and visualize
class boundaries [3]. A related technique is visual counterfactuals
[25, 27] (showing how an input must change to change the clas-
sification of the output). These techniques are typically utilized
post-hoc by AI experts to debug models [28, 29]. Our visual guid-
ance methodology on the other hand assumes very little domain
knowledge, leverages an AR-based interface for more user friendly
visualization, and is usable in live human-robot teaming scenarios.

3 ALGORITHMIC APPROACH
In this section, we introduce a novel algorithm for multi-agent col-
laboration under uncertainty using min-entropy online reinforce-
ment learning called MARS (Min-entropy Algorithm for Robot-
supplied Suggestions).

Our algorithm assumes the presence of two classes of agents:
exploration agents (agents who can move through the environment
and take observations) and active agents (agents who can directly
affect environment state through taking actions). This divide be-
tween agents with differing goals and action spaces is typical in
human-robot teaming domains. For example, a common search and
rescue practice involves an initial search phase conducted by an
aerial vehicle, with ground rescue or airlift units deployed to extract
targets once their locations are determined. In this work, we ex-
plore the case where the active agent is human and the exploration
agents are autonomous.

3.1 Multi-Agent Entropy Minimization
The core insight behind this algorithm is that environmental uncer-
tainty over task-relevant variables can be succinctly characterized
by probability density distributions, a common practice in search
and rescue operations [14, 41, 42]. We use the multivariate prob-
ability mass function (PMF), a discrete version of this concept, to



model environmental uncertainty as it changes over time. This
PMF serves as a shared utility function between all agents in our
formulation for min-entropy collaborative planning, allowing for
solving a single Markov Decision Process (MDP) with the PMF as
its utility function. Furthermore, this PMF can be communicated to
human teammates in order to provide insight into the autonomous
agents’ policy which we detail in Section 4.

The collaborative task can be formulated as a single MDP 𝑀𝑅 ,
over which one or multiple exploration agents maximize their ex-
pected reward.𝑀𝑅 is defined by the 4-tuple: (𝑆,𝐴,𝑇 , 𝑅):
• 𝑆 is the finite set of discrete world states consisting of tradi-
tional “world features”𝑊 (e.g., agent positions) along with
“distance features”𝐷 that encode pairwise distances between
all agents in the collaborative task (including the human
teammate), using an appropriate distance metric for the task
being solved. A finite set of distance features is given by
𝐷 = {𝑑12, 𝑑13, · · · , 𝑑 (𝑁−1)𝑁 }, such that 𝑑12 represents the
distance between agent 1 and 2, and so on. |𝐷 | =

(𝑁
2
)
, where

𝑁 is the total number of agents in the collaborative task.

𝑆 =


𝑊
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• 𝐴 is the set containing all 𝑁 -tuples representing the product
of all possible exploration agent joint actions.
• 𝑇 : 𝑆 ×𝐴→ Π(𝑆) is the state-transition function describing
the model’s state transition dynamics.
• 𝑅 : 𝑆 ×𝐴 × 𝑆 → R defines the expected immediate reward
gained by the agent for taking an action 𝑎 ∈ 𝐴 in a state
𝑠 ∈ 𝑆 and transitioning into the next state 𝑠 ′ ∈ 𝑆 .

We solve this single MDP𝑀𝑅 via online reinforcement learning
to get an optimal policy 𝜋∗

𝑅
for each autonomous agent using a

joint PMF as a reward function given by:

𝑅(𝑠, 𝑎, 𝑠 ′) = 𝛼 (0.5 − |0.5 − 𝑝𝑚𝑓 (𝑠 ′) |) + 𝛽
∑
𝑛∈𝑁

𝑑𝑛 − 1 (1)

In Equation 1, 𝛼 and 𝛽 are tunable hyper-parameters, and 𝑝𝑚𝑓 (𝑠 ′)
is the value of the probability mass function at state 𝑠 ′, representing
the probability that 𝑠 ′ contains a desired goal or target. The first
term of Equation 1 encourages the exploration of states with higher
uncertainty (PMF values close to 0.5), minimizing entropy over time
as those states are observed. The second term maximizes distance
from other agents, maximizing coverage over the state space for
faster learning. Each agent’s reward function is affected by the
current PMF, which is updated every time agents observe a new
state in the environment according to Bayes’ rule. Therefore, the
MDP should be re-solved whenever the PMF updates, in order to
minimize the entropy of the distribution over task-relevant latent
state information.

3.2 Generating Assistive Guidance
Here we present our approach for generating assistive guidance for
human teammates in uncertain environments. Similarly to section
3.1, we can model a human agent’s behavior using an MDP with

the PMF as its utility function. The MDP𝑀𝐻 is likewise defined by
a 4-tuple (𝑆,𝐴,𝑇 , 𝑅), where:
• 𝑆 is the finite set of world states consisting of traditional
“world features”𝑊 , along with the expected number of goals
left (“goals_left”), and the latent boolean variable is_goal
∈ {0, 1} with is_goal = 1 indicating a goal is present.

𝑆 =


𝑊

𝑔𝑜𝑎𝑙𝑠_𝑙𝑒 𝑓 𝑡 ∈ N
𝑖𝑠_𝑔𝑜𝑎𝑙 ∈ B


• 𝐴 is the set of possible task-relevant human actions.
• 𝑇 and 𝑅 are similarly defined as seen in Section 3.1.

Our reward function distinguishes between two classes of ac-
tions: exploration and goal-centric actions. Exploration actions are
geared towards navigating between states to minimize uncertainty
or reach a state containing a goal. In comparison, goal-centric ac-
tions are conducted within a state and contribute towards task
completion (e.g., signaling for pickup in SAR domains).

The reward function for a human agent exploration action is
given by:

𝑅(𝑠, 𝑎, 𝑠 ′) = 𝑝𝑚𝑓 (𝑠 ′) − 𝛽 ∗ 𝑖𝑠_𝑔𝑜𝑎𝑙𝑠 − 𝑝𝑒𝑛𝑎𝑙𝑡𝑦 (2)

where,
𝑝𝑒𝑛𝑎𝑙𝑡𝑦 = 1 − 𝛼 ∗ 𝑔𝑜𝑎𝑙𝑠_𝑙𝑒 𝑓 𝑡

The first term of Equation 2 provides the immediate reward from
the next state 𝑠 ′, the second term encodes a negative reward for
ignoring a goal in the current state 𝑠 , and the penalty term provides
long term incentive to achieve the desired task objectives as quickly
as possible. 𝛼 and 𝛽 are tunable hyper-parameters. We can expand
Equation 2 to get the expected immediate reward as follows:

E(𝑅) = (1 − 𝑝𝑚𝑓 (𝑠)) ∗ (𝑝𝑚𝑓 (𝑠 ′) − 𝑝𝑒𝑛𝑎𝑙𝑡𝑦) +
𝑝𝑚𝑓 (𝑠) ∗ (𝑝𝑚𝑓 (𝑠 ′) − 𝑝𝑒𝑛𝑎𝑙𝑡𝑦 − 𝛽)

(3)

The reward function for a human agent to take goal-centric
actions is as follows:

𝑅(𝑠, 𝑎, 𝑠 ′) = 𝛽 ∗ 𝑖𝑠_𝑔𝑜𝑎𝑙𝑠 − 𝑝𝑒𝑛𝑎𝑙𝑡𝑦 (4)
The first term of equation 4 provides the immediate reward if

a goal is present in the current state 𝑠 , and the rest of the terms
are defined the same as in Equation 2. Expanding Equation 4, the
expected immediate reward is:

E(𝑅) = 𝑝𝑚𝑓 (𝑠) ∗ (𝛽 − 𝑝𝑒𝑛𝑎𝑙𝑡𝑦) −
(1 − 𝑝𝑚𝑓 (𝑠)) ∗ 𝑝𝑒𝑛𝑎𝑙𝑡𝑦 (5)

Solutions to this MDP𝑀𝐻 can be used to obtain policy recom-
mendations for a human agent.

3.3 Algorithm
In this section, we outline the details of MARS, as presented in Algo-
rithm 1. We ground the algorithm with an example task inspired by
Minesweeper, involving a single human agent and a single robotic
drone. The goal of the task is to locate and defuse a number of
mines hidden throughout a grid-based environment without unin-
tentionally detonating them. Although only the human teammate
is capable of defusing mines, the drone has a noisy sensor capable



Figure 2: Algorithmic flow: a) the robot’sMDP is solved, parametrized by the PMF, and actions are sent to all agents, b) the robot
takes an action and c) observes a new potentialmine, updating the PMF (the newmine is visible as the righmost yellow square),
d) the updated PMF is used to solve the human recommendation MDP, e) the resulting PMF and action recommendations
are sent to the human, who f) views the guidance via an AR interface, and takes an action, defusing the mine, g) the new
observation and reward update the PMF again (the new mine has been defused, removing the yellow from the heatmap)

Algorithm 1:Min-entropy Algorithm for Robot-supplied
Suggestions (MARS)
Input: Robots’ MDP𝑀𝑅 (𝑆,𝐴,𝑇 , 𝑅), Human’s MDP𝑀𝐻

(𝑆,𝐴,𝑇 , 𝑅), 𝑅ℎ , Current Robots State
𝑆𝑅 = {𝑠1, 𝑠2, · · · , 𝑠𝑛−1}, Current Human State 𝑠ℎ ,
Num. rollout k, Prior 𝑃

1 𝑝𝑚𝑓 ← 𝑃 ; // Initialize pmf with prior
2 while 𝑠ℎ is not a terminal state do
3 𝜋∗

𝑅
← 𝑠𝑜𝑙𝑣𝑒_𝑝𝑜𝑙𝑖𝑐𝑦 (𝑀𝑅, 𝑝𝑚𝑓 );

4 𝐴𝑅 ← 𝜋∗
𝑅
(𝑆𝑅); // Get optimal actions for each robot

5 𝑆𝑅 ← 𝑠𝑒𝑛𝑑_𝑎𝑐𝑡𝑖𝑜𝑛𝑠 (𝐴𝑅); // Send optimal actions
6 𝑝𝑚𝑓 ← 𝑢𝑝𝑑𝑎𝑡𝑒_𝑝𝑚𝑓 (𝑆𝑅); // Get observations
7 𝜋∗

𝐻
← 𝑠𝑜𝑙𝑣𝑒_𝑝𝑜𝑙𝑖𝑐𝑦_ℎ𝑢𝑚𝑎𝑛(𝑀𝐻 , 𝑝𝑚𝑓 );

8 𝐴𝐻 ← 𝑟𝑜𝑙𝑙𝑜𝑢𝑡 (𝜋∗
𝐻
, 𝑠ℎ) [: 𝑘]; // Get actions for human

9 𝑟𝑒𝑐𝑜𝑚𝑚𝑒𝑛𝑑_𝑎𝑐𝑡𝑖𝑜𝑛(𝐴𝐻 , 𝑝𝑚𝑓 )
10 𝑠ℎ, 𝑟ℎ ← 𝑜𝑏𝑠𝑒𝑟𝑣𝑒_ℎ𝑢𝑚𝑎𝑛_𝑎𝑐𝑡𝑖𝑜𝑛()
11 𝑝𝑚𝑓 ← 𝑢𝑝𝑑𝑎𝑡𝑒_𝑝𝑚𝑓 (𝑟ℎ)

of determining whether the grid square it is currently flying over
contains a hidden mine, parameterized by a false positive and false
negative rate. If the human teammate leaves a square containing
a mine without defusing it, it detonates, providing a substantially
negative (non-terminal) reward for the episode.

Before the task begins, the PMF is initialized with a prior to
provide an initial heuristic (Line 1). If there is no information with
which to seed a prior, a uniform PMF can be used at this step. An
optimal policy can then be computed using the prior PMF and the
robots’ MDP𝑀𝑅 . Based on the learned policy 𝜋∗

𝑅
, optimal actions

are sent to all robots (Lines 3-5). Once the robots execute these
actions, they obtain new observations from the environment and
update the PMF using Bayes’ Rule (Line 6). In the Minesweeper
example shown in Figure 2, step c shows the resultant PMF after
the robot takes an action and obtains a new observation.

Given this updated PMF, the human agent’s policy 𝜋∗
𝐻
is com-

puted and a 𝑘-step rollout is used to provide action suggestions

for the human (Line 7-8). The number of steps 𝑘 determines how
many actions into the future will be recommended to the human
teammate, which can be chosen depending on the nature of the
task. For the Minesweeper example, we provided suggested actions
up to and including the first recommended “defuse” action (step e
in Figure 2). These actions 𝐴𝐻 and the updated PMF are provided
to the human agent as guidance (Line 9), the visualization of which
is discussed in Section 4. Next, the human action is observed, the re-
ward 𝑟ℎ is recovered from the environment, and the PMF is updated
again in response (Lines 10-11).

4 AR-BASED VISUAL GUIDANCE DESIGN
The PMF and action recommendations meant to be communicated
to the human agent are particularly well-suited for visual presen-
tation in the Minesweeper domain, but this will vary by task. For
the Minesweeper domain, we developed a set of AR visualizations
geared toward environment navigation and search tasks. An AR
headset-based interface was chosen due to its hands-free nature and
its ability to present information in-situ, as holograms projected in
environmental context aid in the efficiency of information uptake.

We generalize the proposed AR-based visual guidance into two
categories, corresponding to the two data products of Algorithm
1. First is prescriptive guidance, in which sequences of actions
are directly suggested to the human based on the algorithm’s cur-
rent recommendations. Second is descriptive guidance, where state
space information is presented to the human in the form of the
current PMF to support decision making.

4.1 Prescriptive Guidance
The essence of prescriptive guidance is directly suggesting to a
human teammate what they should do next. In tasks involving
physically navigating through space, like search and rescue or the
Minesweeper experimental domain, movement suggestions can
be represented as holographic arrows projected onto the ground,
extending from the human’s current location to their next suggested
waypoint (Fig. 1 Left), an AR visualization technique which has
shown effectiveness for navigation tasks [16].



This arrow-based guidance is straightforward to understand and
requires little mental effort to follow. However, since the recom-
mendations are presented without rationale, they require a degree
of trust from the human teammate if they are to be followed, which
may or may not be warranted depending on the performance of
the autonomous agents under environmental uncertainty. This
uncertainty may also lead to frequent changes in the path recom-
mendations, deflecting the arrows and causing confusion on the
part of the human teammate as the old guidance is discarded.

4.2 Descriptive Guidance
In contrast to explicit action recommendations, descriptive guid-
ance involves providing state space information with which human
teammates can make their own decisions. For spatial navigation
tasks like the Minesweeper domain, the current PMF can be pro-
jected onto the environment itself, dividing the space into discrete
regions and coloring those regions as a heatmap (Fig. 1 Right). In
the Minesweeper domain, dark purple is used to represent a low
chance of a region containing a goal while bright yellow is used to
represent a high chance, with intermediate probabilities colored on
a gradient between purple and yellow. Since decision-making in the
Minesweeper domain relies more on discrimination between PMF
probabilities close to 0 than probabilities close to 1, the heatmap
is generated using a logarithmic color scale, a technique used to
visually bring out finer distinctions towards the low end of a scale
with an uneven distribution [12].

This descriptive guidance acts as a decision support tool, provid-
ing the human with information which they can use however they
see fit. In contrast to the prescriptive arrows, this type of guidance
is highly transparent. On the other hand, it is more cognitively
demanding, requiring the human to actively plan ahead, thereby
reducing its effectiveness in domains with large and complicated
state spaces or domains with time pressure.

5 EXPERIMENTAL VALIDATION
We evaluate the utility of the AR-based visual guidance modali-
ties presented in Section 4 within a partially observable environ-
ment involving live human-robot teaming, utilizing the proposed
multi-agent entropy minimization algorithm. These results were
obtained through a human subjects study using our collaborative
Minesweeper-inspired domain.

5.1 Experimental Design
Weuse a 3× 1within-subjects experiment to evaluate three different
varieties of AR-based visual guidance: 1) prescriptive guidance, or
the ‘arrow’ condition, 2) descriptive guidance, or ‘heatmap’, and 3) a
combination of prescriptive and descriptive guidance, or ‘combined’
(Figure 3). A within-subjects design was chosen to obtain direct,
grounded comparisons between visualization types from partici-
pants. The guidance was visualized through a Microsoft HoloLens
2, overlaid onto a rectangular grid of cardboard boxes on the floor
of the experiment space.

The orderings of the ‘arrow’ and ‘heatmap’ conditions were ran-
domized and fully counterbalanced between participants. Since the
‘combined’ condition relied on the prior introduction of both modal-
ities independently, it was ordered last. As participants played three
rounds of the game with differing conditions, three environment

maps were created, each with the same number of hidden mines,
located on different squares. We blocked participants to match
experimental conditions to environment maps using a balanced
Latin square design to achieve partial counterbalancing and mini-
mize ordering and learning effects [4, 8]. The Latin square resulted
in blocks of size six differing in the ordering of the ‘arrow’ and
‘heatmap’ conditions, and in the matching of environment map to
condition. Participants were randomly assigned to one of these six
permutations.

5.2 Hypotheses
Through a human subjects study, we evaluate five visual guidance
hypotheses partitioned into three categories:

H1: Subjective Hypotheses
H1.a: Participants will find the combined guidance to be more trust-
worthy than descriptive or prescriptive guidance, as transparency
of recommendation leads to more trust [35, 37].
H1.b: Participants will find the combined guidance to be more inter-
pretable, informative, and helpful for decision-making compared
with the other conditions.
H1.c: Participants will find the combined and prescriptive guidance
conditions to be less stressful and demanding compared with de-
scriptive guidance, due to the presence of clear recommendations.
H2: Performance Hypothesis
H2: Participants will take less time to solve the task when given
combined or prescriptive guidance compared with descriptive guid-
ance, since they can reduce thinking time by leveraging direct
algorithmic guidance.
H3: Independence Hypothesis
H3: Participants will act with more independence and deviate more
frequently from the prescribed path in the combined condition
compared with solely receiving prescriptive guidance, as they can
utilize the added descriptive information to take their own initiative
when they perceive suboptimality in robot suggestions.

5.3 Rules of the Game
Each round, participants attempted to solve the Minesweeper puz-
zle by successfully locating and defusing all four mines hidden
throughout the 9 × 5 grid of cardboard boxes as viewed through
the HoloLens headset. Each turn, participants had four options for
movement actions: “Go North”, “Go South”, “Go East”, and “Go
West”, each of which moves a single square in the respective direc-
tion. If the participant suspected a square contained a hidden mine,
they could take a fifth action: “Defuse”, which opened the box on
the square they were currently standing on, revealing whether it
was empty or contained a mine, which they had now successfully
defused (Fig. 3). If they moved from a square containing a mine
without defusing, the mine would be unintentionally detonated.
Unlike Minesweeper, this did not end the game; participants were
simply told beforehand that this would contribute to a low score.

As the participants moved through the grid, a virtual drone
teammate concurrently explored the grid autonomously, provid-
ing assistive guidance in a format dictated by the experimental
condition. After the participant took a turn, they waited briefly
for the drone to take theirs. The drone could move faster than the



Figure 3: The three experimental conditions. Awhite square
marks the user’s current location where they have defused a
mine. Top-left: ‘arrow’ condition, Top-right: ‘heatmap’ con-
dition, Bottom: ‘combined’ condition.

human teammate, moving three squares for every human action
and using its noisy mine-detection sensor on every square it flew
over. However, the drone was incapable of defusing or otherwise
interacting with the mines; only the participant could do that. The
human and drone teammates alternated turns until all four mines
had been successfully defused or unintentionally detonated.

5.4 Study Protocol
Upon providing informed consent, participants were educated on
the overall rules of the game through alternating phases of reading
an illustrated instruction manual and reviewing it with an experi-
menter to reinforce the ideas. To minimize potential learning effects,
participants were given a brief practice round (without visual guid-
ance) using the HoloLens to ensure that they acclimated to the AR
interface and became comfortable exploring the environment and
issuing commands, trying every action at least once. Participants
were told about their drone teammate, including information about
the drone’s capabilities and limitations, namely its uncertain sensor.
This served to ensure participants would not be overly confused
if they saw the drone’s guidance change during the experiment
round.

Participants began their first experimental round with random-
ized condition and environment map. They were first shown a page
in the instruction manual describing the form of guidance they
would be receiving that round. They then donned the HoloLens
and played the round, taking actions and navigating the experiment
space until all four mines had been defused or unintentionally deto-
nated. After finishing the round, participants removed the HoloLens
and returned to the staging area to complete a post-round survey.
These steps were repeated twice more for the other experimen-
tal conditions. Following the third post-round survey, participants
completed a final post-experiment survey and an exit interview.

5.5 Implementation Details
Three environment maps with different locations for the four hid-
den mines were selected to be of similar difficulty and similar op-
timal solving time. Each round, the virtual drone’s actions were

controlled by our algorithm running on a laptop (Intel(R) Core i7-
10870H CPU @ 2.20GHz) and broadcasted turn-by-turn via a ROS
publisher to the HoloLens. The drone’s guidance each round was
similarly computed by our algorithm and broadcast to the HoloLens
using ROS. Each turn, the drone took three steps to mimic the rela-
tive speed of aerial robot navigation over human navigation. The
drone observed every square it flew over, even observing some
squares more than once, using a simulated noisy sensor with a
10% false-positive rate and a 1% false-negative rate to determine
whether a hiddenmine is present on that square, adding uncertainty
into the drone’s recommendations. We chose to use a single drone
for our experiment since our domain was small and adding more
autonomous agents would lead to quicker convergence towards
optimal guidance, causing a more deterministic interaction with
participants. The robot’s MDP and the human recommendation
MDP were solved online each turn using policy iteration.

In the prescriptive ‘arrow’ condition, our algorithm sent action
suggestions every turn up to and including the next suggested
“Defuse” action to the AR interface. In the descriptive ‘heatmap’
condition, our algorithm sent the updated PMF every turn, shown
as a heatmap from dark purple for low values to bright yellow for
high values, interpolating logarithmically for intermediate values.
Each turn, participants selected their action via their choice of
voice control (comprising 69.3% of all 1597 recorded moves), or
menu-based hand control (30.7% of recorded moves).

In all three environmental maps, there was the possibility for
certain scenarios we dub “switchbacks” where participants will turn
around and double back on their previous state if they follow the
drone’s updated prescriptive arrow. These scenarios are an emer-
gent behavior when the participant is located immediately between
two potential mine locations, whether they are actual mines or false
positives. The drone simply updates its path based on new informa-
tion and reward maximization, but its behavior is often perceived
as suboptimal from the perspective of the human teammate. We ob-
served how participants responded to these switchbacks, especially
as they differed based on guidance condition.

5.6 Measurement
We had 19 participants (12 males, 7 females) in our IRB-approved
study, ranging in age from 18 to 37 (𝑀 = 25.42; 𝑆𝐷 = 4.76). We
used a number of subjective and objective measures to evaluate our
algorithm and the AR-based visual guidance.

For subjective metrics, we administered post-round question-
naires to participants for each condition to get immediate impres-
sions. These surveys consisted of 7-point Likert-scale items derived
from questions from established questionnaires in the robotics and
explainable AI community, geared at trust and reliability [19, 24],
interpretability and decision-making [19, 40], and stress and work-
load (NASA-TLX) [17]. From these items, we were able to identify
three concepts: Trust, Interpretability, and Mental Load.

The Trust scale consists of 4 items: confidence, reliability, trust,
and intelligence (Cronbach’s 𝛼 = 0.90). Interpretability consists of 4
items: decision-making power, adaptability, informativeness, and
sufficiency (Cronbach’s 𝛼 = 0.89). Mental Load consists of 2 items:
stress and cumbersomeness (Cronbach’s 𝛼 = 0.84).



Following the last round of the experiment, participants com-
pared each of the three guidance types they received. Participants
ranked each guidance type relative to one another in terms of trust,
usefulness, helpfulness for decision making, and confidence.

For objective metrics, we recorded the following items for each
experiment round: Total Moves (the total number of moves needed
to solve the puzzle), Total Time (the total time needed to solve the
puzzle, in seconds), Time per Move (the average time per move,
in seconds), and Compliance Rate (the percentage of moves taken
matching the recommendation provided by the system, only appli-
cable for the ‘arrow’ and ‘combined’ conditions).

6 RESULTS AND DISCUSSION
6.1 Analysis
6.1.1 Subjective Analysis. We analyzed both the post-round survey
scales and post-experiment comparison results to test our subjective
hypotheses. The post-round Likert scale data suffered from a sig-
nificant ceiling effect, where many participants rated all guidance
types highly, using primarily 6s and 7s out of a maximum score
of 7. For this reason, we transformed the raw Likert scores into
rankings, giving for each survey item the participant’s preference
ordering between the three guidance types, with any ties receiving
equal ranks. We analyzed both this ranked scale data and the ranks
from the post-experiment survey’s comparison questions using a
nonparametric Kruskal-Wallis Test with experimental condition as
a fixed effect. Post-hoc comparisons used Dunn’s Test for analyzing
guidance type sample pairs for stochastic dominance.

We found a significant effect in favor of the ‘combined’ condition
over ‘arrow’ for the Trust scale (𝐻 (2) = 8.26, 𝑝 = 0.016). Post-
hoc analysis with Dunn’s Test found that participants consistently
preferred ‘combined’ (𝑀 = 2.68), 𝑝 = 0.017 over ‘arrow’ (𝑀 = 2.03).
We also found significant effects in the related post-experiment
comparison measures of trust (𝐻 (2) = 21.56, 𝑝 < 0.0001), and
confidence (𝐻 (2) = 20.63, 𝑝 < 0.0001). Post-hoc analysis for the
trust comparison found that ‘combined’ (𝑀 = 2.52), 𝑝 < 0.0001 and
‘heatmap’ (𝑀 = 2.16), 𝑝 = 0.0051 were both ranked significantly
higher than ‘arrow’ (𝑀 = 1.32). Likewise, post-hoc analysis for the
confidence comparison also found that ‘combined’ (𝑀 = 2.58), 𝑝 <

0.0001 and ‘heatmap’ (𝑀 = 2.05), 𝑝 = 0.032 were both ranked
significantly higher than ‘arrow’ (𝑀 = 1.37). These results all serve
to validate H1.a.

Many participants shared similar insights in the post-experiment
survey, reporting trust in the ‘combined’ condition over ‘arrow’
because they could reason about the rationale of the suggestions:
• “The combination of a "safe" path and heatmap information
helpedme trust the system because I could compare the assessed
path with the sensor information and make my own decision”

We also found a significant effect in favor of the ‘combined’ con-
dition over ‘arrow’ for the Interpretability scale (𝐻 (2) = 8.26, 𝑝 =

0.039). Post-hoc analysis with Dunn’s Test found that participants
consistently preferred ‘combined’ (𝑀 = 2.70), 𝑝 = 0.040 over ‘ar-
row’ (𝑀 = 2.14). There was an additional significant effect in
the related post-experiment comparison measure of helpfulness
for decision-making (𝐻 (2) = 19.24, 𝑝 < 0.0001). Post-hoc analy-
sis found that ‘combined’ (𝑀 = 2.53), 𝑝 < 0.0001 and ‘heatmap’

(𝑀 = 2.11), 𝑝 = 0.0018 were both ranked significantly higher than
‘arrow’ (𝑀 = 1.37). These results serve to validate H1.b.

Participants also emphasized how simply following the arrow-
based guidance was easy, while noting that they were taking a
leap of faith by following the suggestions, a feeling which was
alleviated through the addition of the heatmap and its associated
transparency.
• “The arrows were certaintly "easier" to use...The heatmap [guid-
ance] required more thought, but it made me more confident.”
• “...with the heatmap you could see how confident the system
was in its choices... The arrows alone were bad because you
couldn’t see why the system was changing its mind. ”

Though we found overall significance for the Mental Load scale
(𝐻 (2) = 6.68, 𝑝 = 0.036), there was not enough statistical power to
make definitive post-hoc conclusions. Analysis with Dunn’s Test
found nearly significant effects for ‘arrow’ (𝑀 = 2.63) being rated
as higher load than both ‘heatmap’ (𝑀 = 2.24), 𝑝 = 0.062 and ‘com-
bined’ (𝑀 = 2.32), 𝑝 = 0.099. Interestingly, this effect appears to be
indicating the opposite of hypothesis H1.c, showing that conditions
containing prescriptive guidance are rated as more taxing. How-
ever, due to the lack of significance,H1.c is inconclusive, and will
require more data to definitively address.

Some insight into this effect is visible though in participant
reactions to path changes in the ‘arrow’ condition. Participants
felt they needed to follow the guidance given to them since they
had no other information, but felt stressed and irritated when they
encountered sudden path changes, especially switchbacks.
• “Arrow advice was frustrating when it kept changing the sug-
gestions. I was not sure why it was happening.”
• “I would like to be involved in the decision making, rather than
being restricted by the guidance system. The arrow system es-
sentially tells the player to trust its decision with no alternative
consideration.”

The post-experiment comparison measure of usefulness also had
significant effect. (𝐻 (2) = 15.98, 𝑝 = 0.0003). Post-hoc analysis
revealed significant effects for ‘combined’ (𝑀 = 2.58) being rated
as more useful than both ‘arrow’ (𝑀 = 1.89), 𝑝 = 0.0003 and
‘combined’ (𝑀 = 1.53), 𝑝 = 0.032. Lastly, in asking which guidance
participants would prefer to use in a hypothetical round 4, the
significant favorite was also ‘combined’ based on a one-sample
test of proportions (11/19 participants chose ‘combined’; a greater
proportion than the expected random proportion of 0.33, 𝑝 = 0.024).

6.1.2 Objective Analysis. Formeasuring the performance of a round,
we investigated two measures: Total Time and Time per Move. The
domain was small enough that most participants solved it within
a few moves of the optimal solution length. For all objective data
analysis, we removed a single round out of the 57 conducted where
the experiment was interrupted and the participant removed their
HoloLens for an extended period of time, invalidating the data. We
analyzed these performance metrics using a one-way analysis of
variance (ANOVA) with experimental condition as a fixed effect.
Post-hoc tests used Tukey’s HSD to control for Type I errors in
comparing performance across each guidance type.

The ANOVA revealed significant effects for both total time
(𝐹 (2, 53) = 3.91, 𝑝 = 0.026), and time per move (𝐹 (2, 53) = 3.78, 𝑝 =

0.029). Post-hoc analysis for total time with Tukey’s HSD shows



Figure 4: ‘Combined’ visualization achieves the Total Time
performance benefits of ‘arrow’ while allowing for reduced
rigidity in suggested action compliance.

that participants spent significantly less time solving the puzzle
in the ‘combined’ condition (𝑀 = 236.63𝑠), 𝑝 = 0.024 compared
to the ‘heatmap’ condition (𝑀 = 297.47𝑠). The ‘arrow’ condi-
tion (𝑀 = 253.25𝑠) fell in the middle, with no significant effects.
Post-hoc analysis for time per move discovered that participants
spent significantly less time per move in the ‘arrow’ condition
(𝑀 = 8.59𝑠), 𝑝 = 0.045 compared to ‘heatmap’ (𝑀 = 10.41𝑠), with
‘combined’ (𝑀 = 8.74𝑠), 𝑝 = 0.066 nearly achieving significantly
lower time per move compared to ‘heatmap’. The effects surround-
ing time and time per move serve to validate H2.

We were also interested in observing how differing compliance
rates affected total moves in rounds using the ‘arrow’ and ‘com-
bined’ conditions (conditions which contained prescriptive guid-
ance), to see whether straying from the prescribed path led to
changes in performance. Using Pearson’s correlation coefficient,
in the ‘arrow’ condition, there is a significant negative correla-
tion between compliance rate and total moves (i.e., the more par-
ticipants follow the guidance, the quicker they solve the puzzle)
(𝑟 (18) = −0.49, 𝑝 = 0.039). However, there is no such statistically
significant correlation between compliance rate and total moves
in the ‘combined’ condition (𝑟 (19) = −0.11, 𝑝 = 0.64). This sug-
gests that deviation from the path is a bad strategy when it is not
informed, as in the case of ‘arrow’, but when there is extra informa-
tion to work with such as the addition of PMF data in ‘combined’,
it may be acceptable to deviate in certain cases.

Interviews from participants who deviated from the system’s
suggestions paint a similar picture: providing PMF data empowers
people to act more independent of the guidance.
• “It gives specific recommendations which are really just easy to
use and follow. But it also gives you the broader understanding
of the map to make deviations when they make sense.”

To determine the extent that this strategy was employed by
participants, we compare the compliance rates of ‘arrow’ and ‘com-
bined’. Using a one-tailed t test, we measure whether participants
strayed from the path more frequently in the presence of the added
PMF data. Running this test, no significance was found between
‘arrow’ (𝑀 = 0.83) and ‘combined’ (𝑀 = 0.78); (𝑡 (35) = −0.84, 𝑝 =

0.20). However, a high proportion of noncompliant moves were
overly conservative defuse actions, especially early in rounds. By

measuring the defuse-independent compliance rate between the two
conditions, representing the frequency with which participants
stayed on the same recommended path, we find a near-significant
effect between ‘arrow’ (𝑀 = 0.90) and ‘combined’ (𝑀 = 0.83);
(𝑡 (35) = −1.63, 𝑝 = 0.056). This compliance data suggests that the
addition of PMF data in ‘combined’ allows for more independence
and injection of beneficial human decision compared to the mono-
lithic ‘arrow’, and that participants are willing to take advantage of
this. These findings support and nearly validate H3.

However, from the survey responses, it is evident that many par-
ticipants altered their search strategy in the ‘combined’ condition:
instead of entirely relying on the system’s suggestions, participants
started mixing the provided guidance with their own intuition.
• “With just the arrow guidance, I was forced to follow it always
since there was no other way to gather information. With the
heatmap and combined (since it includes the heatmap) I was
able to incorporate my own decisions as well.”

6.2 Discussion and Key Takeaways
We summarize key takeaways to inform the design of visual guid-
ance systems for human-robot teaming, aligning with findings in
the xAI literature where people consider robots to be more helpful
and trustworthy when they justify their actions [11, 37].
T1: Prescriptive guidance, in the form of arrow or waypoint based
suggestions, can be inherently restrictive. This guidance is easy
to follow but puts human teammates in an ‘automatic’ pattern
of thought (also known as system 1 thinking) [21]. In contrast,
descriptive guidance forces the user to take more conscious actions
(system 2 thinking). By combining both types of guidance, human
teammates can leverage the explicit prescriptive guidance to help
them reduce their workload, while still maintaining environmental
awareness and acting with greater independence.
T2: In the ‘arrow’ condition, participants initially had a highly
variable degree of trust in the system’s suggestions. Some people
over-trusted the guidance, taking its suggestions to be inherently
correct, and some under-trusted the guidance, ignoring the arrow to
defuse more conservatively. By providing descriptive data alongside
prescriptive suggestions, people’s behavior often tended towards a
degree of trust somewhere in the middle of the two extremes, as
they could see for themselves where a drone was more or less con-
fident. This echoes findings on the ability of interpretable systems
to mitigate over- and under-trust [9, 39].
T3: Some participants found it difficult to notice changes in the
PMF when the change was not in their field of view. They suggested
adding a feature notifying the user when a new high confidence
target was found so they could be made aware of it. Additionally,
some participants expressed desire to receive an explanation when
a highly confident square suddenly becomes less confident.
T4: Participants did not like sudden path changes, viewing the
behavior as unconfident. Participants expressed a preference for
direct paths, desiring an explanation when a change was necessary.
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